Estimating Missing Temporal Attributes In Genealogical Data
نویسنده
چکیده
We present a machine learning approach for estimating missing temporal attributes in genealogical data. Genealogy analyses have been commonly focused on understanding generational relations. The importance of temporal analyses has often been suppresed in genealogical research. We have observed that temporal attributes of an individual, birth, death, marriage and divorce dates, are frequently missing in genealogical data. Filling out those attributes allows users to reconstruct temporal streams of their family stories, which in turn make fruitful genealogy analyses possible.
منابع مشابه
A blended model for estimating of missing precipitation data (Case study of Tehran - Mehrabad station)
Meteorological stations usually contain some missing data for different reasons.There are several traditional methods for completing data, among them bivariate and multivariate linear and non-linear correlation analysis, double mass curve, ratio and difference methods, moving average and probability density functions are commonly used. In this paper a blended model comprising the bivariate expo...
متن کاملIranian TEFL Graduates’ Conceptions of Measurement Error in Research: A Genealogical Narrative Inquiry
The aim of this study is to investigate Iranian TEFL graduates’ conception of measurement error in research. Adopting a sequential explanatory multi-method strategy (Borg, 2009), the researchers analyzed causal and temporal relations in the research narratives elicited from 30 TEFL graduates. Gee’s (1986) framework for identifying narrative discourse units (lines, stanzas, and episodes) was ado...
متن کاملModeling Multivariate Spatio-Temporal Remote Sensing Data with Large Gaps
Prediction models for multivariate spatio-temporal functions in geosciences are typically developed using supervised learning from attributes collected by remote sensing instruments collocated with the outcome variable provided at sparsely located sites. In such collocated data there are often large temporal gaps due to missing attribute values at sites where outcome labels are available. Our o...
متن کاملAn approach using hidden Markov model for estimating and replacing missing categorical data
In order to process missing data, we propose a statistical relational learning approach for estimating and replacing missing categorical data. First, for a given data set, all categorical attributes are classified as a proper number of groups, and these groups are independent of each other. Second, principles for ordering attributes in one group are proposed and the attribute sequence of the gr...
متن کاملDEA with Missing Data: An Interval Data Assignment Approach
In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009